Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling
Ke Zhang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorShuo Zheng
R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
Search for more papers by this authorJiasheng Wu
The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
Search for more papers by this authorJing He
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorYu Ouyang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorChunchun Ao
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorRuibo Lang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorYijia Jiang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorYifan Yang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorHuan Xiao
School of Life Science, Hubei University, Wuhan, China
Search for more papers by this authorHuiming Wang
Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
Search for more papers by this authorCorresponding Author
Changyong Li
Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Xianning Medical College, Hubei University of Science & Technology, Xianning, China
Correspondence
Changyong Li, Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Dongcheng Wu, Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Dongcheng Wu
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
Correspondence
Changyong Li, Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Dongcheng Wu, Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Search for more papers by this authorKe Zhang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorShuo Zheng
R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
Search for more papers by this authorJiasheng Wu
The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
Search for more papers by this authorJing He
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorYu Ouyang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorChunchun Ao
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorRuibo Lang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorYijia Jiang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorYifan Yang
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Search for more papers by this authorHuan Xiao
School of Life Science, Hubei University, Wuhan, China
Search for more papers by this authorHuiming Wang
Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
Search for more papers by this authorCorresponding Author
Changyong Li
Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
Xianning Medical College, Hubei University of Science & Technology, Xianning, China
Correspondence
Changyong Li, Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Dongcheng Wu, Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Dongcheng Wu
Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
Correspondence
Changyong Li, Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Dongcheng Wu, Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
Email: [email protected]
Search for more papers by this authorKe Zhang and Shuo Zheng contributed equally to this work.
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Open Research
DATA AVAILABILITY STATEMENT
All data generated and/or analyzed during this study are included in this published article.
Supporting Information
Filename | Description |
---|---|
fsb223599-sup-0001-FiguresS1-S5.pdfPDF document, 2.4 MB |
Figures S1-S5. |
fsb223599-sup-0002-TableS1.docxWord 2007 document , 12.8 KB |
Table S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Johansen KL, Chertow GM, Foley RN, et al. US renal data system 2020 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2021; 77(4 Suppl 1): A7-A8. doi:10.1053/j.ajkd.2021.01.002
- 2de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011; 305(24): 2532-2539. doi:10.1001/jama.2011.861
- 3Srivastava SP, Li J, Kitada M, et al. SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death Dis. 2018; 9(10): 997. doi:10.1038/s41419-018-1057-0
- 4Declèves A-E, Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat Rev Nephrol. 2010; 6(6): 371-380. doi:10.1038/nrneph.2010.57
- 5Kheirollahi V, Wasnick RM, Biasin V, et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat Commun. 2019; 10(1): 2987. doi:10.1038/s41467-019-10839-0
- 6Srivastava SP, Zhou H, Setia O, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021; 12(1): 2368. doi:10.1038/s41467-021-22617-y
- 7Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 2007; 71(9): 846-854.
- 8Nieto MA, Huang RY-J, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016; 166(1): 21-45. doi:10.1016/j.cell.2016.06.028
- 9Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis. Prog Retin Eye Res. 2017; 60: 44-65. doi:10.1016/j.preteyeres.2017.08.001
- 10Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014; 7(344):re8. doi:10.1126/scisignal.2005189
- 11Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006; 69(2): 213-217.
- 12Liu Z, Xu J, He J, et al. A critical role of autocrine sonic hedgehog signaling in human CD138+ myeloma cell survival and drug resistance. Blood. 2014; 124(13): 2061-2071. doi:10.1182/blood-2014-03-557298
- 13Yang C, Chen W, Chen Y, Jiang J. Smoothened transduces hedgehog signal by forming a complex with Evc/Evc2. Cell Res. 2012; 22(11): 1593-1604. doi:10.1038/cr.2012.134
- 14Chung CH, Dignam JJ, Hammond ME, et al. Glioma-associated oncogene family zinc finger 1 expression and metastasis in patients with head and neck squamous cell carcinoma treated with radiation therapy (RTOG 9003). J Clin Oncol. 2011; 29(10): 1326-1334. doi:10.1200/JCO.2010.32.3295
- 15Qu C, Liu Y, Kunkalla K, et al. Trimeric G protein-CARMA1 axis links smoothened, the hedgehog receptor transducer, to NF-κB activation in diffuse large B-cell lymphoma. Blood. 2013; 121(23): 4718-4728. doi:10.1182/blood-2012-12-470153
- 16Chaudhry P, Singh M, Triche TJ, Guzman M, Merchant AA. GLI3 repressor determines Hedgehog pathway activation and is required for response to SMO antagonist glasdegib in AML. Blood. 2017; 129(26): 3465-3475. doi:10.1182/blood-2016-05-718585
- 17Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 2016; 12(7): 426-439. doi:10.1038/nrneph.2016.54
- 18Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010; 21(9): 1045-1056. doi:10.1089/hum.2010.115
- 19Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell. 2019; 177(2): 428-445.e18. doi:10.1016/j.cell.2019.02.029
- 20Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019; 88: 487-514. doi:10.1146/annurev-biochem-013118-111902
- 21Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther. 2020; 11(1): 336. doi:10.1186/s13287-020-01852-y
- 22Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016; 12(1): 13-26. doi:10.1038/nrneph.2015.175
- 23Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011; 7(6): 327-340. doi:10.1038/nrneph.2011.51
- 24Omenetti A, Porrello A, Jung Y, et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest. 2008; 118(10): 3331-3342. doi:10.1172/JCI35875
- 25Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: a tangled web to unweave. Cardiovasc Drugs Ther. 2017; 31(5–6): 579-592. doi:10.1007/s10557-017-6755-9
- 26Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. doi:10.1016/j.diabres.2021.109119
- 27Dagar N, Das P, Bisht P, Taraphdar AK, Velayutham R, Arumugam S. Diabetic nephropathy: a twisted thread to unravel. Life Sci. 2021; 278:119635. doi:10.1016/j.lfs.2021.119635
- 28Ricciardi CA, Gnudi L. Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies. Metabolism. 2021; 124:154890. doi:10.1016/j.metabol.2021.154890
- 29Leiker M, Suzuki G, Iyer VS, Canty JM, Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant. 2008; 17(8): 911-922.
- 30Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008; 103(11): 1204-1219. doi:10.1161/CIRCRESAHA.108.176826
- 31Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans. 2013; 41(1): 283-287. doi:10.1042/BST20120192
- 32Duan Y-R, Chen B-P, Chen F, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte. J Cell Mol Med. 2021; 25(23): 10798-10813. doi:10.1111/jcmm.14558
- 33Jin J, Shi Y, Gong J, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther. 2019; 10(1): 95. doi:10.1186/s13287-019-1177-1
- 34Ezquer F, Ezquer M, Simon V, et al. Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biol Blood Marrow Transplant. 2009; 15(11): 1354-1365. doi:10.1016/j.bbmt.2009.07.022
- 35Li Y, Liu J, Liao G, et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int J Mol Med. 2018; 41(5): 2629-2639. doi:10.3892/ijmm.2018.3501
- 36Bai Y, Wang J, He Z, Yang M, Li L, Jiang H. Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines. Med Sci Monit. 2019; 25: 3069-3076. doi:10.12659/MSM.914860
- 37Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018; 14(8): 493-507. doi:10.1038/s41581-018-0023-5
- 38Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019; 8(5):467. doi:10.3390/cells8050467
- 39Zou X, Zhang G, Cheng Z, et al. Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther. 2014; 5(2): 40. doi:10.1186/scrt428
- 40Zhang Y, Le X, Zheng S, et al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther. 2022; 13(1): 171. doi:10.1186/s13287-022-02855-7
- 41Song N, Zhang T, Xu X, et al. miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation. Front Physiol. 2018; 9:790. doi:10.3389/fphys.2018.00790
- 42Li JH, Zhu H-J, Huang XR, Lai KN, Johnson RJ, Lan HY. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol. 2002; 13(6): 1464-1472.
- 43Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009; 19(2): 156-172. doi:10.1038/cr.2009.5
- 44Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol. 2015; 11(4): 233-244. doi:10.1038/nrneph.2014.246
- 45Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011; 7(12): 684-696. doi:10.1038/nrneph.2011.149
- 46Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015; 21(9): 989-997. doi:10.1038/nm.3901
- 47LeBleu VS, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013; 19(8): 1047-1053. doi:10.1038/nm.3218
- 48Humphreys BD, Lin S-L, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010; 176(1): 85-97. doi:10.2353/ajpath.2010.090517
- 49Elovikova AN, Gvozdeva LM, Buberman KL, Sorokina VP, Korol'kova EN. Orthodontic treatment results with dental arch anomalies in children and adolescents with and without removal of the teeth. Stomatologiia (Mosk). 1989; 68(6): 60-62.
- 50Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015; 21(9): 998-1009. doi:10.1038/nm.3902
- 51Bufalieri F, Infante P, Bernardi F, et al. ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nat Commun. 2019; 10(1): 3304. doi:10.1038/s41467-019-11093-0
- 52Ng JMY, Curran T. The Hedgehog's tale: developing strategies for targeting cancer. Nat Rev Cancer. 2011; 11(7): 493-501. doi:10.1038/nrc3079
- 53Shen X, Peng Y, Li H. The injury-related activation of hedgehog signaling pathway modulates the repair-associated inflammation in liver fibrosis. Front Immunol. 2017; 8:1450. doi:10.3389/fimmu.2017.01450
- 54Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res. 2011; 13(3): 211. doi:10.1186/bcr2876
- 55Li Y, Hu Q, Li C, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019; 129(3): 1129-1151. doi:10.1172/JCI121987
- 56Li Y, Sun X, Gao D, et al. Dual functions of Rack1 in regulating hedgehog pathway. Cell Death Differ. 2020; 27(11): 3082-3096. doi:10.1038/s41418-020-0563-7
- 57Zhang P, Gao H, Yan R, Yu L, Xia C, Yang D. has_circ_0070512 promotes prostate cancer progression by regulating the miR-338-3p/hedgehog signaling pathway. Cancer Sci. 2023; 114(4): 1491-1506. doi:10.1111/cas.15672
- 58Gao Q, Chang X, Yang M, et al. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. Environ Toxicol. 2022; 37(1): 79-91. doi:10.1002/tox.23379
- 59Li L, Zhang L, Zhao X, Cao J, Li J, Chu G. Downregulation of miR-152 contributes to the progression of liver fibrosis via targeting Gli3 in vivo and in vitro. Exp Ther Med. 2019; 18(1): 425-434. doi:10.3892/etm.2019.7595
- 60Kim J, Lee C, Shin Y, et al. sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Mol Ther. 2021; 29(4): 1471-1486. doi:10.1016/j.ymthe.2020.12.025
- 61Xiao K, He W, Guan W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020; 11(10): 863. doi:10.1038/s41419-020-03034-3