Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves
Xiangyou Hu
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorWanxia He
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorClaudiu Diaconu
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorXiaoying Tang
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorGrahame J. Kidd
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorWendy B. Macklin
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorBruce D. Trapp
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorCorresponding Author
Riqiang Yan
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Correspondence: Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA. E-mail: [email protected]Search for more papers by this authorXiangyou Hu
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorWanxia He
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorClaudiu Diaconu
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorXiaoying Tang
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorGrahame J. Kidd
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorWendy B. Macklin
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorBruce D. Trapp
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Search for more papers by this authorCorresponding Author
Riqiang Yan
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
Correspondence: Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA. E-mail: [email protected]Search for more papers by this authorABSTRACT
BACE1 is a promising therapeutic and preventive target for Alzheimer's disease because it is essential for amyloid deposition. However, the recent demonstration of BACE1 in modulating developmental myelination in both peripheral and central nervous systems raises a concern of its effect on myelin maintenance or remyelination, and inhibition of these processes will potentially be detrimental to the BACE1 inhibitor users who are susceptible to myelination diseases such as adult peripheral nerve injury or multiple sclerosis. In this report, we investigated the role of BACE1 during peripheral nerve remyelination in wildtype (WT) and BACE1-null mice. We show here that genetic deletion of BACE1 affects sciatic nerve remyelination. The impaired remyelination appears to stem from the loss of neuregulin-1 cleavage by BACE1. To demonstrate a direct cleavage of neuregulin-1 by BACE1, we have identified a BACE1 cleavage site that turns out be highly conserved among neuregulin-1 paralogues. Moreover, we show that neuregulin-1 family member neuregulin-3 is also cleavable by BACE1. We hypothesize that the BACE1-cleaved extracellular domain of axonal neuregulin-1, perhaps neuregulin-3 as well, binds to Schwann cell ErbB receptors, which in turn regulate remyelination. Pharmacological inhibition of BACE1 should be carefully monitored to avoid alteration of signaling pathway that regulates remyelination.—Hu, X., He, W., Diaconu, C., Tang, X., Kidd, G. J., Macklin, W. B., Trapp, B. D., Yan, R. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J. 22, 2970–2980 (2008)
REFERENCES
- 1Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741
- 2Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., Tomasselli, A. G., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E. (1999) Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature 402, 533–537
- 3Hussain, I., Powell, D., Howlett, D. R., Tew, D. G., Meek, T. D., Chapman, C., Gloger, I. S., Murphy, K. E., Southan, C. D., Ryan, D. M., Smith, T. S., Simmons, D. L., Walsh, F. S., Dingwall, C., and Christie, G. (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol. Cell. Neurosci. 14, 419–427
- 4Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, H. F., Frigon, N., Hong, J., JacobsonCroak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., Zhao, J., McConlogue, L., and John, V. (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540
- 5Selkoe, D. J. (2005) Defining molecular targets to prevent Alzheimer disease. Arch. Neurol. 62, 192–195
- 6Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., Beach, T., Sue, L., Wong, P., Price, D., Li, R., and Shen, Y. (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 9, 3–4
- 7Fukumoto, H., Rosene, D. L., Moss, M. B., Raju, S., Hyman, B. T., and Irizarry, M. C. (2004) Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol. 164, 719–725
- 8Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D. R., Price, D. L., and Wong, P. C. (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci. 4, 233–234
- 9Luo, Y., Bolon, B., Kahn, S., Bennett, B. D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., Martin, L., Louis, J. C., Yan, Q., Richards, W. G., Citron, M., and Vassar, R. (2001) Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci. 4, 231–232
- 10Roberds, S. L., Anderson, J., Basi, G., Bienkowski, M. J., Branstetter, D. G., Chen, K. S., Freedman, S. B., Frigon, N. L., Games, D., Hu, K., Johnson-Wood, K., Kappenman, K. E., Kawabe, T. T., Kola, I., Kuehn, R., Lee, M., Liu, W., Motter, R., Nichols, N. F., Power, M., Robertson, D. W., Schenk, D., Schoor, M., Shopp, G. M., Shuck, M. E., Sinha, S., Svensson, K. A., Tatsuno, G., Tintrup, H., Wijsman, J., Wright, S., and McConlogue, L. (2001) BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 10, 1317–1324
- 11McConlogue, L., Buttini, M., Anderson, J. P., Brigham, E. F., Chen, K. S., Freedman, S. B., Games, D., Johnson-Wood, K., Lee, M., Zeller, M., Liu, W., Motter, R., and Sinha, S. (2007) Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem. 282, 26326–26334
- 12Chang, W. P., Koelsch, G., Wong, S., Downs, D., Da, H., Weerasena, V., Gordon, B., Devasamudram, T., Bilcer, G., Ghosh, A. K., and Tang, J. (2004) In vivo inhibition of Abeta production by memapsin 2 (beta-secretase) inhibitors. J. Neurochem. 89, 1409–1416
- 13Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., Verma, I. M., and Masliah, E. (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 8, 1343–1349
- 14Kao, S. C., Krichevsky, A. M., Kosik, K. S., and Tsai, L. H. (2004) BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 279, 1942–1949
- 15Willem, M., Garratt, A. N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., DeStrooper, B., Saftig, P., Birchmeier, C., and Haass, C. (2006) Control of peripheral nerve myelination by the beta-secretase BACE1. Science 314, 664–666
- 16Hu, X., Hicks, C. W., He, W., Wong, P., Macklin, W. B., Trapp, B. D., and Yan, R. (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525
- 17Zhou, Q., and Anderson, D. J. (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73
- 18Lu, Q. R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C. D., and Rowitch, D. H. (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86
- 19Takebayashi, H., Nabeshima, Y., Yoshida, S., Chisaka, O., Ikenaka, K., and Nabeshima, Y. (2002) The basic helix-loophelix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 12, 1157–1163
- 20Arnett, H. A., Fancy, S. P., Alberta, J. A., Zhao, C., Plant, S. R., Kaing, S., Raine, C. S., Rowitch, D. H., Franklin, R. J., and Stiles, C. D. (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306, 2111–2115
- 21Yue, T., Xian, K., Hurlock, E., Xin, M., Kernie, S. G., Parada, L. F., and Lu, Q. R. (2006) A critical role for dorsal progenitors in cortical myelination. J. Neurosci. 26, 1275–1280
- 22Funakoshi, H., Risling, M., Carlstedt, T., Lendahl, U., Timmusk, T., Metsis, M., Yamamoto, Y., and Ibanez, C. F. (1998) Targeted expression of a multifunctional chimeric neurotrophin in the lesioned sciatic nerve accelerates regeneration of sensory and motor axons. Proc. Natl. Acad. Sci. U. S. A. 95, 5269–5274
- 23Akassoglou, K., Akpinar, P., Murray, S., and Strickland, S. (2003) Fibrin is a regulator of Schwann cell migration after sciatic nerve injury in mice. Neurosci. Lett. 338, 185–188
- 24Smith, G. M., Rabinovsky, E. D., McManaman, J. L., and Shine, H. D. (1993) Temporal and spatial expression of ciliary neurotrophic factor after peripheral nerve injury. Exp. Neurol. 121, 239–247
- 25Haney, C. A., Sahenk, Z., Li, C., Lemmon, V. P., Roder, J., and Trapp, B. D. (1999) Heterophilic binding of L1 on unmyelinated sensory axons mediates Schwann cell adhesion and is required for axonal survival. J. Cell Biol. 146, 1173–1184
- 26Yan, R., Han, P., Miao, H., Greengard, P., and Xu, H. (2001) The transmembrane domain of the Alzheimer's beta-secretase (BACE1) determines its late Golgi localization and access to beta-amyloid precursor protein (APP) substrate. J. Biol. Chem. 276, 36788–36796
- 27Yin, X., Baek, R. C., Kirschner, D. A., Peterson, A., Fujii, Y., Nave, K. A., Macklin, W. B., and Trapp, B. D. (2006) Evolution of a neuroprotective function of central nervous system myelin. J. Cell Biol. 172, 469–478
- 28Michailov, G. V., Sereda, M. W., Brinkmann, B. G., Fischer, T. M., Haug, B., Birchmeier, C., Role, L., Lai, C., Schwab, M. H., and Nave, K. A. (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science. 304, 700–703
- 29He, W., Lu, Y., Qahwash, I., Hu, X. Y., Chang, A., and Yan, R. (2004) Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat. Med. 10, 959–965
- 30Morgan-Hughes, J. A., and Engle, W. K. (1968) Structural and histochemical changes in the axons following nerve crush. Arch. Neurol. 19, 598–612
- 31Schroder, J. M. (1972) Altered ratio between axon diameter and myelin sheath thickness in regenerated nerve fibers. Brain Res. 45, 49–65
- 32Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S., Xu, X., Esper, R. M., Loeb, J. A., Shrager, P., Chao, M. V., Falls, D. L., Role, L., and Salzer, J. L. (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694
- 33Nave, K. A., and Salzer, J. L. (2006) Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500
- 34Lemke, G. (2006) Neuregulin-1 and myelination. Sci. STKE 2006, e11
10.1126/stke.3252006pe11 Google Scholar
- 35Carroll, S. L., Miller, M. L., Frohnert, P. W., Kim, S. S., and Corbett, J. A. (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3 is induced during Wallerian degeneration. J. Neurosci. 17, 1642–1659
- 36Chen, S., Velardez, M. O., Warot, X., Yu, Z. X., Miller, S. J., Cros, D., and Corfas, G. (2006) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J. Neurosci. 26, 3079–3086
- 37LeBlanc, A. C., and Poduslo, J. F. (1990) Axonal modulation of myelin gene expression in the peripheral nerve. J. Neurosci. Res. 26, 317–326
- 38Wong, E., Mizisin, A. P., Garrett, R. S., Miller, A. L., and Powell, H. C. (1992) Changes in aldose reductase after crush injury of normal rat sciatic nerve. J. Neurochem. 58, 2212–2220
- 39Brady, S. F., Singh, S., Crouthamel, M. C., Holloway, M. K., Coburn, C. A., Garsky, V. M., Bogusky, M., Pennington, M. W., Vacca, J. P., Hazuda, D., and Lai, M. T. (2004) Rational design and synthesis of selective BACE-1 inhibitors. Bioorg. Med. Chem. Lett. 14, 601–604
- 40Pietrak, B. L., Crouthamel, M. C., Tugusheva, K., Lineberger, J. E., Xu, M., Dimuzio, J. M., Steele, T., Espeseth, A. S., Stachel, S. J., Coburn, C. A., Graham, S. L., Vacca, J. P., Shi, X. P., Simon, A. J., Hazuda, D. J., and Lai, M. T. (2005) Biochemical and cell-based assays for characterization of BACE-1 inhibitors. Anal. Biochem. 342, 144–151
- 41Ozaki, M., Itoh, K., Miyakawa, Y., Kishida, H., and Hashikawa, T. (2004) Protein processing and releases of neuregulin-1 are regulated in an activity-dependent manner. J. Neurochem. 91, 176–188
- 42Sisodia, S. S., George-Hyslop, P. H. (2002) Gamma-secretase, Notch Abeta and Alzheimer's disease: where do the presenilins fit in. Nat. Rev. Neurosci. 3, 281–290
- 43Tomasselli, A. G., Qahwash, I., Emmons, T. L., Lu, Y., Leone, J. W., Lull, J. M., Fok, K. F., Bannow, C. A., Smith, C. W., Bienkowski, M. J., Heinrikson, R. L., and Yan, R. (2003) Employing a superior BACE1 cleavage sequence to probe cellular APP processing. J. Neurochem. 84, 1006–1017
- 44Turner, R. T., III, Loy, J. A., Nguyen, C., Devasamudram, T., Ghosh, A. K., Koelsch, G., and Tang, J. (2002) Specificity of memapsin 1 and its implications on the design of memapsin 2 (beta-secretase) inhibitor selectivity. Biochemistry 41, 8742–8746
- 45Webster, H. D. (1962) Transient, focal accumulation of axonal mitochondria during the early stages of wallerian degeneration. J. Cell Biol. 12, 361–383
- 46Fawcett, J. W., and Keynes, R. J. (1990) Peripheral nerve regeneration. Annu. Rev. Neurosci. 13, 43–60
- 47Zhang, D., Sliwkowski, M. X., Mark, M., Frantz, G., Akita, R., Sun, Y., Hillan, K., Crowley, C., Brush, J., and Godowski, P. J. (1997) Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc. Natl. Acad. Sci. U. S. A. 94, 9562–9567
- 48Carteron, C., Ferrer-Montiel, A., and Cabedo, H. (2006) Characterization of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J. Cell Sci. 119, 898–909
- 49Zanazzi, G., Einheber, S., Westreich, R., Hannocks, M. J., Bedell-Hogan, D., Marchionni, M. A., and Salzer, J. L. (2001) Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J. Cell Biol. 152, 1289–1299
- 50Rosenbluth, J. (1980) Peripheral myelin in the mouse mutant Shiverer. J. Comp. Neurol. 193, 729–739
- 51Martini, R., Mohajeri, M. H., Kasper, S., Giese, K. P., and Schachner, M. (1995) Mice doubly deficient in the genes for P0 and myelin basic protein show that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. J. Neurosci. 15, 4488–4495