Proteomic analysis and in vivo visualization of extracellular vesicles from mouse oviducts during pre-implantation embryo development
Kalli K. Stephens
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorRyan M. Finnerty
Department of OB/GYN & Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorDeAna G. Grant
Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorSarayut Winuthayanon
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorPatricia A. Martin-DeLeon
Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
Search for more papers by this authorCorresponding Author
Wipawee Winuthayanon
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
Department of OB/GYN & Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, Missouri, USA
Correspondence
Wipawee Winuthayanon, Translational Biosciences Program, School of Medicine, University of Missouri, 1030 Hitt Street, Columbia, MO 65211, USA.
Email: [email protected]
Search for more papers by this authorKalli K. Stephens
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorRyan M. Finnerty
Department of OB/GYN & Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorDeAna G. Grant
Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorSarayut Winuthayanon
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorPatricia A. Martin-DeLeon
Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
Search for more papers by this authorCorresponding Author
Wipawee Winuthayanon
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
Department of OB/GYN & Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, Missouri, USA
Correspondence
Wipawee Winuthayanon, Translational Biosciences Program, School of Medicine, University of Missouri, 1030 Hitt Street, Columbia, MO 65211, USA.
Email: [email protected]
Search for more papers by this authorKalli K. Stephens and Ryan M. Finnerty contributed equally.
Abstract
Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting. In this study, we isolated oEVs from the oviductal fluid at estrus and different stages of early embryonic development. The 2306–3066 proteins in oEVs identified at the different time points revealed 58–60 common EV markers identified in exosome databases. Oviductal extracellular vesicle proteins from pregnant samples significantly differed from those in non-pregnant samples. In addition, superovulation changes the protein contents in oEVs compared to natural ovulation at estrus. Importantly, we have identified that embryo-protectant proteins such as high-mobility protein group B1 and serine (or cysteine) peptidase inhibitor were only enriched in the presence of embryos. We also visualized the physical interaction of EVs and the zona pellucida of 4- to 8-cell stage embryos using transmission electron microscopy as well as in vivo live imaging of epithelial cell-derived GFP-tagged CD9 mouse model. All protein data in this study are readily available to the scientific community in a searchable format at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/. In conclusion, we identified oEVs proteins that could be tested to determine whether they can improve embryonic developmental outcomes in vivo and in vitro setting.
Open Research
DATA AVAILABILITY STATEMENT
LC/MS–MS of proteins for all datasets are available as supplementary zipped protein data files. In addition, raw abundance values for all proteins expressed in our dataset are available to the scientific community as a web-search function at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/.
Supporting Information
Filename | Description |
---|---|
fsb270035-sup-0001-FigureS1.docxWord 2007 document , 109.2 KB |
Figure S1. |
fsb270035-sup-0002-TableS1.xlsxExcel 2007 spreadsheet , 21.4 KB |
Table S1. |
fsb270035-sup-0003-TableS2.xlsxExcel 2007 spreadsheet , 3.3 MB |
Table S2. |
fsb270035-sup-0004-TableS3.xlsxExcel 2007 spreadsheet , 344.3 KB |
Table S3. |
fsb270035-sup-0005-Datasets.zipZip archive, 1.7 MB |
Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Hunter RH. Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc. 2012; 87: 244-255. doi:10.1111/j.1469-185X.2011.00196.x
- 2Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013; 23: 443-452. doi:10.1016/j.cub.2013.02.007
- 3Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003; 69: 1109-1117. doi:10.1095/biolreprod.103.018093
- 4Lee KF, Xu JS, Lee YL, Yeung WS. Demilune cell and parotid protein from murine oviductal epithelium stimulates preimplantation embryo development. Endocrinology. 2006; 147: 79-87. doi:10.1210/en.2005-0596
- 5Wang S, Larina IV. In vivo dynamic 3D imaging of oocytes and embryos in the mouse oviduct. Cell Rep. 2021; 36:109382. doi:10.1016/j.celrep.2021.109382
- 6Brenner RM. Renewal of oviduct cilia during the menstrual cycle of the rhesus monkey. Fertil Steril. 1969; 20: 599-611. doi:10.1016/s0015-0282(16)37086-8
- 7Quinn P, Horstman FC. Is the mouse a good model for the human with respect to the development of the preimplantation embryo in vitro? Hum Reprod. 1998; 13(Suppl 4): 173-183. doi:10.1093/humrep/13.suppl_4.173
- 8Biondic S, Canizo J, Vandal K, Zhao C, Petropoulos S. Cross-species comparison of mouse and human preimplantation development with an emphasis on lineage specification. Reproduction. 2023; 165: R103-R116. doi:10.1530/REP-22-0144
- 9Schulz KN, Harrison MM. Mechanisms regulating zygotic genome activation. Nat Rev Genet. 2019; 20: 221-234. doi:10.1038/s41576-018-0087-x
- 10Parks JC, McCallie BR, Janesch AM, Schoolcraft WB, Katz-Jaffe MG. Blastocyst gene expression correlates with implantation potential. Fertil Steril. 2011; 95: 1367-1372. doi:10.1016/j.fertnstert.2010.08.009
- 11Rizos D, Clemente M, Bermejo-Alvarez P, de La Fuente J, Lonergan P, Gutierrez-Adan A. Consequences of in vitro culture conditions on embryo development and quality. Reprod Domest Anim. 2008; 43(Suppl 4): 44-50. doi:10.1111/j.1439-0531.2008.01230.x
- 12Giritharan G, Talbi S, Donjacour A, Di Sebastiano F, Dobson AT, Rinaudo PF. Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction. 2007; 134: 63-72. doi:10.1530/REP-06-0247
- 13McKiernan SH, Bavister BD. Timing of development is a critical parameter for predicting successful embryogenesis. Hum Reprod. 1994; 9: 2123-2129. doi:10.1093/oxfordjournals.humrep.a138403
- 14Magnani L, Cabot RA. In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development. Mol Reprod Dev. 2008; 75: 1726-1735. doi:10.1002/mrd.20915
- 15Corcoran D, Fair T, Park S, et al. Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction. 2006; 131: 651-660. doi:10.1530/rep.1.01015
- 16Bavister BD. Role of oviductal secretions in embryonic growth in vivo and in vitro. Theriogenology. 1988; 29: 143-154. doi:10.1016/0093-691X(88)90037-4
- 17Bongso A, Soon-Chye N, Sathananthan H, Lian NP, Rauff M, Ratnam S. Improved quality of human embryos when co-cultured with human ampullary cells. Hum Reprod. 1989; 4: 706-713. doi:10.1093/oxfordjournals.humrep.a136971
- 18White KL, Hehnke K, Rickords LF, Southern LL, Thompson DL Jr, Wood TC. Early embryonic development in vitro by coculture with oviductal epithelial cells in pigs. Biol Reprod. 1989; 41: 425-430. doi:10.1095/biolreprod41.3.425
- 19Zhu J, Xu Y, Rashedi AS, et al. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle. Mol Hum Reprod. 2016; 22: 756-767. doi:10.1093/molehr/gaw041
- 20Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016; 164: 1226-1232. doi:10.1016/j.cell.2016.01.043
- 21Harris EA, Stephens KK, Winuthayanon W. Extracellular vesicles and the oviduct function. Int J Mol Sci. 2020; 21: 1-20. doi:10.3390/ijms21218280
10.3390/ijms21218280 Google Scholar
- 22Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with Oviductal exosomes and uptake in sperm. PLoS One. 2013; 8:e80181. doi:10.1371/journal.pone.0080181
- 23Alcântara-Neto AS, Fernandez-Rufete M, Corbin E, et al. Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation. Reprod Fertil Dev. 2020; 32: 409-418. doi:10.1071/RD19058
- 24Ferraz MDAMM, Carothers A, Dahal R, Noonan MJ, Songsasen N. Oviductal extracellular vesicles interact with the spermatozoon's head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci Rep. 2019; 9: 9484. doi:10.1038/s41598-019-45857-x
- 25Ferraz MDAMM, Nagashima JB, Noonan MJ, Crosier AE, Songsasen N. Oviductal extracellular vesicles improve post-thaw sperm function in red wolves and cheetahs. Int J Mol Sci. 2020; 21: 1-20. doi:10.3390/ijms21103733
10.3390/ijms21103733 Google Scholar
- 26Almiñana C, Corbin E, Tsikis G, et al. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction. 2017; 154: 153-168. doi:10.1530/REP-17-0054
- 27Waqas MY, Zhang Q, Ahmed N, et al. Cellular evidence of exosomes in the reproductive tract of Chinese soft-shelled turtle Pelodiscus sinensis. J Exp Zool A Ecol Integr Physiol. 2017; 327: 18-27. doi:10.1002/jez.2065
- 28Bathala P, Fereshteh Z, Li K, Al-Dossary AA, Galileo DS, Martin-DeLeon PA. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility. Mol Hum Reprod. 2018; 24: 143-157. doi:10.1093/molehr/gay003
- 29Fereshteh Z, Schmidt SA, Al-Dossary AA, et al. Murine Oviductosomes (OVS) microRNA profiling during the estrous cycle: delivery of OVS-borne microRNAs to sperm where miR-34c-5p localizes at the centrosome. Sci Rep. 2018; 8: 16094. doi:10.1038/s41598-018-34409-4
- 30Li Y, Liu C, Guo N, et al. Extracellular vesicles from human fallopian tubal fluid benefit embryo development in vitro. Human Reproduction Open. 2023; 2023:hoad006. doi:10.1093/hropen/hoad006
- 31Lopera-Vasquez R, Hamdi M, Maillo V, et al. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction. 2017; 153: 461-470. doi:10.1530/REP-16-0384
- 32Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor alpha is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A. 2010; 107: 19272-19277. doi:10.1073/pnas.1013226107
- 33Neckles VN, Morton MC, Holmberg JC, et al. A transgenic inducible GFP extracellular-vesicle reporter (TIGER) mouse illuminates neonatal cortical astrocytes as a source of immunomodulatory extracellular vesicles. Sci Rep. 2019; 9: 3094. doi:10.1038/s41598-019-39679-0
- 34Wu X, Li L, Iliuk A, Tao WA. Highly efficient Phosphoproteome capture and analysis from urinary extracellular vesicles. J Proteome Res. 2018; 17: 3308-3316. doi:10.1021/acs.jproteome.8b00459
- 35Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of Exosomal cargo. J Mol Biol. 2016; 428: 688-692. doi:10.1016/j.jmb.2015.09.019
- 36Pathan M, Fonseka P, Chitti SV, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2019; 47: D516-D519. doi:10.1093/nar/gky1029
- 37Venny OJ. An Interactive Tool for Comparing Lists with Venn Diagrams. BioinfoGP of CNB-CSIC; 2007.
- 38Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016; 13: 731-740. doi:10.1038/nmeth.3901
- 39Hodge K, Have ST, Hutton L, Lamond AI. Cleaning up the masses: exclusion lists to reduce contamination with HPLC-MS/MS. J Proteome. 2013; 88: 92-103. doi:10.1016/j.jprot.2013.02.023
- 40Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25: 25-29. doi:10.1038/75556
- 41Jo S, Kim HR, Mun Y, Jun CD. Transgelin-2 in immunity: its implication in cell therapy. J Leukoc Biol. 2018; 104: 903-910. doi:10.1002/JLB.MR1117-470R
- 42Tanaka H, Ohtsu A, Shiratsuki S, et al. Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. Mol Reprod Dev. 2016; 83: 815-826. doi:10.1002/mrd.22693
- 43Zumoffen CM, Massa E, Caille AM, Munuce MJ, Ghersevich SA. Effects of lactoferrin, a protein present in the female reproductive tract, on parameters of human sperm capacitation and gamete interaction. Andrology. 2015; 3: 1068-1075. doi:10.1111/andr.12093
- 44Hansen PJ. Possible roles for heat shock protein 70 and glutathione in protection of the mammalian preimplantation embryo from heat shock. Annu Rev Biomed Sci. 1999; 1: 5-29.
- 45Edwards JL, Hansen PJ. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol Reprod Dev. 1997; 46: 138-145. doi:10.1002/(SICI)1098-2795(199702)46:2<138::AID-MRD4>3.0.CO;2-R
- 46Lange SS, Mitchell DL, Vasquez KM. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc Natl Acad Sci U S A. 2008; 105: 10320-10325. doi:10.1073/pnas.0803181105
- 47Meghadri SH, Martinez-Delgado B, Ostermann L, et al. Loss of Serpina1 in mice leads to altered gene expression in inflammatory and metabolic pathways. Int J Mol Sci. 2022; 23: 1-11. doi:10.3390/ijms231810425
10.3390/ijms231810425 Google Scholar
- 48Winuthayanon W, Bernhardt ML, Padilla-Banks E, et al. Oviductal estrogen receptor alpha signaling prevents protease-mediated embryo death. elife. 2015; 4:e10453. doi:10.7554/eLife.10453
- 49Singer JD, Gurian-West M, Clurman B, Roberts JM. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 1999; 13: 2375-2387. doi:10.1101/gad.13.18.2375
- 50Huotari J, Meyer-Schaller N, Hubner M, et al. Cullin-3 regulates late endosome maturation. Proc Natl Acad Sci U S A. 2012; 109: 823-828. doi:10.1073/pnas.1118744109
- 51Fagerberg L, Hallstrom BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014; 13: 397-406. doi:10.1074/mcp.M113.035600
- 52Wang S, Zheng H, Esaki Y, Kelly F, Yan W. Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biol Reprod. 2006; 74: 102-108. doi:10.1095/biolreprod.105.045484
- 53Yu B, Smith TH, Battle SL, Ferrell S, Hawkins RD. Superovulation alters global DNA methylation in early mouse embryo development. Epigenetics. 2019; 14: 780-790. doi:10.1080/15592294.2019.1615353
- 54Van der Auwera I, D'Hooghe T. Superovulation of female mice delays embryonic and fetal development. Hum Reprod. 2001; 16: 1237-1243. doi:10.1093/humrep/16.6.1237
- 55de Waal E, Vrooman LA, Fischer E, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015; 24: 6975-6985. doi:10.1093/hmg/ddv400
- 56Dissanayake K, Nõmm M, Lättekivi F, et al. Oviduct as a sensor of embryo quality: deciphering the extracellular vesicle (EV)-mediated embryo-maternal dialogue. J Mol Med. 2021; 99: 685-697. doi:10.1007/s00109-021-02042-w
- 57Greening DW, Nguyen HPT, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo Interactions1. Biol Reprod. 2016; 94: 38. doi:10.1095/biolreprod.115.134890
- 58Wang C, Liu Y, Chang C, et al. Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins. Biosci Rep. 2016; 36:e00297. doi:10.1042/BSR20150220