Impact of dietary vitamin A on striatal function in adult rats
Anaïs Marie
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorRémi Kinet
Institut des Maladies Neurodégénératives, UMR 5293, University of Bordeaux, Bordeaux, France
CNRS UMR 5293, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
Search for more papers by this authorJean-Christophe Helbling
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorMorgane Darricau
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Institut des Maladies Neurodégénératives, UMR 5293, University of Bordeaux, Bordeaux, France
CNRS UMR 5293, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
Search for more papers by this authorSerge Alfos
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorMathieu Di Miceli
Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, UK
Search for more papers by this authorMaria-Florencia Angelo
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorAline Foury
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorEmmanuel Richard
INSERM, U1035, CHU Bordeaux, University of Bordeaux, Bordeaux, France
Search for more papers by this authorPierre Trifilieff
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorNicolas P. Mallet
Institut des Maladies Neurodégénératives, UMR 5293, University of Bordeaux, Bordeaux, France
CNRS UMR 5293, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
Search for more papers by this authorCorresponding Author
Clementine Bosch-Bouju
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Correspondence
Clementine Bosch-Bouju, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux F-33000, France.
Email: [email protected]
Search for more papers by this authorAnaïs Marie
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorRémi Kinet
Institut des Maladies Neurodégénératives, UMR 5293, University of Bordeaux, Bordeaux, France
CNRS UMR 5293, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
Search for more papers by this authorJean-Christophe Helbling
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorMorgane Darricau
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Institut des Maladies Neurodégénératives, UMR 5293, University of Bordeaux, Bordeaux, France
CNRS UMR 5293, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
Search for more papers by this authorSerge Alfos
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorMathieu Di Miceli
Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, UK
Search for more papers by this authorMaria-Florencia Angelo
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorAline Foury
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorEmmanuel Richard
INSERM, U1035, CHU Bordeaux, University of Bordeaux, Bordeaux, France
Search for more papers by this authorPierre Trifilieff
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Search for more papers by this authorNicolas P. Mallet
Institut des Maladies Neurodégénératives, UMR 5293, University of Bordeaux, Bordeaux, France
CNRS UMR 5293, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
Search for more papers by this authorCorresponding Author
Clementine Bosch-Bouju
INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
Correspondence
Clementine Bosch-Bouju, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux F-33000, France.
Email: [email protected]
Search for more papers by this authorAbstract
The striatum is a brain structure involved in the control of voluntary movement. Striatum contains high amounts of retinoic acid, the active metabolite of vitamin A, as well as retinoid receptors, RARβ and RXRγ. Previous studies revealed that disruption of retinoid signaling initiated during development is deleterious for striatal physiology and related motor functions. However, the alteration of retinoid signaling, and the importance of vitamin A supply during adulthood on striatal physiology and function has never been established. In the present study, we investigated the impact of vitamin A supply on striatal function. Adult Sprague–Dawley rats were fed with three specific diets, either sub-deficient, sufficient, or enriched in vitamin A (0.4, 5, and 20 international units [IU] of retinol per g of diet, respectively) for 6 months. We first validated that vitamin A sub-deficient diet in adult rats constitutes a physiological model of retinoid signaling reduction in the striatum. We then revealed subtle alterations of fine motor skills in sub-deficient rats using a new behavioral apparatus specifically designed to test forepaw reach-and-grasp skills relying on striatal function. Finally, we showed using qPCR analysis and immunofluorescence that the striatal dopaminergic system per se was not affected by vitamin A sub-deficiency at adult age. Rather, cholinergic synthesis in the striatum and μ-opioid receptor expression in striosomes sub-territories were the most affected by vitamin A sub-deficiency starting at adulthood. Taken together these results revealed that retinoid signaling alteration at adulthood is associated with motor learning deficits together with discrete neurobiological alterations in the striatum.
Graphical Abstract
The study by Marie et al. investigated the impact of vitamin A sub-deficient diet (0.4 IU/g of retinol) on striatal function and related motor behavior in adult rats. Vitamin A sub-deficient diet-induced alterations of fine motor skills as demonstrated with reach-and-grasp lever press task. RT-qPCR analyses revealed that retinoid signaling was reduced in the striatum (in green). Moreover, MOR (muopiod receptors), a marker of striosomes sub-territories (in orange) and ChaT (choline-acetyl transferase) were reduced.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request to the corresponding author.
Supporting Information
Filename | Description |
---|---|
fsb223037-sup-0001-Supinfo.docxWord 2007 document , 15.1 KB |
Table S1. |
fsb223037-sup-0002-FigureS1.pdfPDF document, 74.5 KB |
Figure S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients. 2013; 5: 3563-3581. doi:10.3390/nu5093563
- 2Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006; 66: 606-630. doi:10.1002/neu.20242
- 3McCaffery P, Zhang J, Crandall JE. Retinoic acid signaling and function in the adult hippocampus. J Neurobiol. 2006; 66: 780-791. doi:10.1002/neu.20237
- 4Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007; 8: 755-765. doi:10.1038/nrn2212
- 5Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci. 2012; 35: 733-741. doi:10.1016/j.tins.2012.08.005
- 6Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res. 2013; 54: 1761-1775. doi:10.1194/jlr.R030833
- 7Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C. Nuclear and extranuclear effects of vitamin a. Can J Physiol Pharmacol. 2015; 93: 1065-1075. doi:10.1139/cjpp-2014-0522
- 8Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005; 75: 275-293. doi:10.1016/j.pneurobio.2005.03.002
- 9Eichele G. Retinoids: from hindbrain patterning to Parkinson disease. Trends Genet. 1997; 13: 343-345.
- 10Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and mechanism of vitamin A metabolism in the pathophysiology of Parkinson's disease. JPD. 2021; 11: 949-970. doi:10.3233/JPD-212671
- 11Obeso JA, Stamelou M, Goetz CG, et al. Past, present, and future of Parkinson's disease: a special essay on the 200th anniversary of the shaking palsy: the shaking palsy: past, present and future. Mov Disord. 2017; 32: 1264-1310. doi:10.1002/mds.27115
- 12Mamaligas AA, Cai Y, Ford CP. Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Sci Rep. 2016; 6:37834. doi:10.1038/srep37834
- 13Pan J, Yu J, Sun L, et al. ALDH1A1 regulates postsynaptic μ–opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep. 2019; 9: 3602. doi:10.1038/s41598-019-40326-x
- 14Krezel W, Kastner P, Chambon P. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience. 1999; 89: 1291-1300.
- 15Zetterström RH, Lindqvist E, De Urquiza AM, et al. Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid: role of retinoids in the CNS. Eur J Neurosci. 1999; 11: 407-416. doi:10.1046/j.1460-9568.1999.00444.x
- 16Kane MA, Chen N, Sparks S, Napoli JL. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem J. 2005; 388: 363-369. doi:10.1042/BJ20041867
- 17Krezel W, Ghyselinck N, Samad TA, et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science. 1998; 279: 863-867.
- 18Carta M, Stancampiano R, Tronci E, et al. Vitamin A deficiency induces motor impairments and striatal cholinergic dysfunction in rats. Neuroscience. 2006; 139: 1163-1172. doi:10.1016/j.neuroscience.2006.01.027
- 19Kitaoka K, Hattori A, Chikahisa S, Miyamoto K, Nakaya Y, Sei H. Vitamin A deficiency induces a decrease in EEG delta power during sleep in mice. Brain Res. 2007; 1150: 121-130. doi:10.1016/j.brainres.2007.02.077
- 20Poulin J-F, Caronia G, Hofer C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018; 21: 1260-1271. doi:10.1038/s41593-018-0203-4
- 21Wu J, Kung J, Dong J, et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1a1-positive Nigrostriatal dopaminergic neurons in motor learning. Cell Rep. 2019; 28: 1167-1181.e7. doi:10.1016/j.celrep.2019.06.095
- 22Liu G, Yu J, Ding J, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014; 124: 3032-3046. doi:10.1172/JCI72176
- 23Wey MC-Y, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS ONE. 2012; 7:e31522. doi:10.1371/journal.pone.0031522
- 24Sgobio C, Wu J, Zheng W, et al. Aldehyde dehydrogenase 1–positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci Rep. 2017; 7: 5283. doi:10.1038/s41598-017-05598-1
- 25Reynolds LM, Flores C. Mesocorticolimbic dopamine pathways across adolescence: diversity in development. Front Neural Circuits. 2021; 15:735625. doi:10.3389/fncir.2021.735625
- 26Ijomone OM, Olaibi OK, Biose IJ, Mba C, Umoren KE, Nwoha PU. Performance of motor associated behavioural tests following chronic nicotine administration. Ann Neurosci. 2014; 21: 42-46. doi:10.5214/ans.0972.7531.210203
- 27Marie A, Leroy J, Darricau M, et al. Preventive vitamin A supplementation improves striatal function in 6-hydroxydopamine hemiparkinsonian rats. Front Nutr. 2022; 9:811843. doi:10.3389/fnut.2022.811843
- 28Winkler C, Kirik D, Björklund A, Dunnett SB. Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Prog Brain Res. 2000; 127: 233-265. doi:10.1016/S0079-6123(00)27012-X
- 29Biesalski HK, Ehrenthal W, Gross M, Hafner G, Harth O. Rapid determination of retinol (vitamin a) in serum by high pressure liquid chromatography (HPLC). Int J Vitam Nutr Res. 1983; 53: 130-137.
- 30Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates—6th Edition. Elsevier; 2007.
- 31Dumetz F, Buré C, Alfos S, et al. Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats. Neurobiol Aging. 2020; 85: 1-10. doi:10.1016/j.neurobiolaging.2019.09.016
- 32Favier M, Carcenac C, Drui G, et al. Implication of dorsostriatal D3 receptors in motivational processes: a potential target for neuropsychiatric symptoms in Parkinson's disease. Sci Rep. 2017; 7:41589. doi:10.1038/srep41589
- 33Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017; 7:16878. doi:10.1038/s41598-017-17204-5
- 34Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9: 671-675. doi:10.1038/nmeth.2089
- 35 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2013.
- 36Pinheiro J, Bates D, DebRoy S, et al. Package “nlme”. 2022.
- 37Bonhomme D, Minni AM, Alfos S, et al. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front Behav Neurosci. 2014; 8:20. doi:10.3389/fnbeh.2014.00020
- 38Cocco S, Diaz G, Stancampiano R, et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience. 2002; 115: 475-482.
- 39Dumetz F, Ginieis R, Bure C, et al. Neuronal morphology and synaptic plasticity in the hippocampus of vitamin A deficient rats. Nutr Neurosci. 2022; 25: 779-790. doi:10.1080/1028415X.2020.1809877
- 40Pallet V, Enderlin V. Vitamine A et vieillissement cérébral. OCL. 2011; 18: 68-75. doi:10.1051/ocl.2011.0375
10.1051/ocl.2011.0375 Google Scholar
- 41O'Connor C, Varshosaz P, Moise AR. Mechanisms of feedback regulation of vitamin A metabolism. Nutrients. 2022; 14: 1312. doi:10.3390/nu14061312
- 42Wolff SBE, Ko R, Ölveczky BP. Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci Adv. 2022; 8:eabk0231. doi:10.1126/sciadv.abk0231
- 43Whishaw IQ, Pellis SM, Gorny BP. Skilled reaching in rats and humans: evidence for parallel development or homology. Behav Brain Res. 1992; 47: 59-70.
- 44Morein-Zamir S, Robbins TW. Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Res. 2015; 1628: 117-129. doi:10.1016/j.brainres.2014.09.012
- 45Peak J, Hart G, Balleine BW. From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning. Eur J Neurosci. 2019; 49: 658-671. doi:10.1111/ejn.13964
- 46Shadmehr R, Reppert TR, Summerside EM, Yoon T, Ahmed AA. Movement vigor as a reflection of subjective economic utility. Trends Neurosci. 2019; 42: 323-336. doi:10.1016/j.tins.2019.02.003
- 47Niewiadomska-Cimicka A, Krzyżosiak A, Ye T, et al. Genome-wide analysis of RARβ transcriptional targets in mouse striatum links retinoic acid signaling with Huntington's disease and other neurodegenerative disorders. Mol Neurobiol. 2017; 54: 3859-3878. doi:10.1007/s12035-016-0010-4
- 48Pedrini S, Bogush A, Ehrlich ME. Phosphatidylinositide 3-kinase and protein kinase C zeta mediate retinoic acid induction of DARPP-32 in medium size spiny neurons in vitro. J Neurochem. 2008; 106: 917-924. doi:10.1111/j.1471-4159.2008.05475.x
- 49Rataj-Baniowska M, Niewiadomska-Cimicka A, Paschaki M, et al. Retinoic acid receptor β controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J Neurosci. 2015; 35: 14467-14475. doi:10.1523/JNEUROSCI.1278-15.2015
- 50Samad TA, Krezel W, Chambon P, Borrelli E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor–retinoid X receptor family. Proc Natl Acad Sci U S A. 1997; 94: 14349-14354.
- 51Sodja C, Fang H, Dasgupta T, Ribecco M, Walker PR, Sikorska M. Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Brain Res Mol Brain Res. 2002; 99: 83-91. doi:10.1016/s0169-328x(01)00324-2
- 52Crittenden JR, Graybiel AM. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat. 2011; 5:59. doi:10.3389/fnana.2011.00059
- 53McCaffery PJ, Adams J, Maden M, Rosa-Molinar E. Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci. 2003; 18: 457-472. doi:10.1046/j.1460-9568.2003.02765.x
- 54Husson M, Enderlin V, Delacourte A, et al. Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in beta-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol Dis. 2006; 23: 1-10. doi:10.1016/j.nbd.2006.01.008
- 55Brtko J, Rock E, Nezbedova P, et al. Age-related change in the retinoid X receptor beta gene expression in peripheral blood mononuclear cells of healthy volunteers: effect of 13-cis retinoic acid supplementation. Mech Ageing Dev. 2007; 128: 594-600. doi:10.1016/j.mad.2007.08.005
- 56Feart C, Pallet V, Boucheron C, et al. Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur J Endocrinol. 2005; 152: 449-458. doi:10.1530/eje.1.01858
- 57Kocełak P, Owczarek A, Bożentowicz-Wikarek M, et al. Plasma concentration of retinol binding protein 4 (RBP4) in relation to nutritional status and kidney function in older population of PolSenior study. Adv Med Sci. 2018; 63: 323-328. doi:10.1016/j.advms.2018.04.007
- 58Lee ES, Yoo JS, Lim JS, et al. Differences in adipokine and hepatokine levels among non-diabetic population classified by age and sex. J Lifestyle Med. 2013; 3: 62-67.
- 59Touyarot K, Bonhomme D, Roux P, et al. A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS ONE. 2013; 8:e72101. doi:10.1371/journal.pone.0072101
- 60Kaneko H, Sano H, Hasegawa Y, Tamura H, Suzuki SS. Effects of forced movements on learning: findings from a choice reaction time task in rats. Learn Behav. 2017; 45: 191-204. doi:10.3758/s13420-016-0255-9
- 61Liao W-L, Tsai H-C, Wang H-F, et al. Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci U S A. 2008; 105: 6765-6770. doi:10.1073/pnas.0802109105
- 62Saga Y, Kobayashi M, Ohta H, et al. Impaired extrapyramidal function caused by the targeted disruption of retinoid X receptor RXRγ1 isoform: RXRγ1 knockout mice. Genes Cells. 1999; 4: 219-228. doi:10.1046/j.1365-2443.1999.00253.x
- 63Kobayashi M, Matsuoka I, Kurihara K. Cholinergic differentiation of cultured sympathetic neurons induced by retinoic acid. Induction of choline acetyltransferase-mRNA and suppression of tyrosine hydroxylase-mRNA levels. FEBS Lett. 1994; 337: 259-264. doi:10.1016/0014-5793(94)80204-1
- 64Brimblecombe KR, Cragg SJ. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem Nerosci. 2017; 8: 235-242. doi:10.1021/acschemneuro.6b00333
- 65Crittenden JR, Lacey CJ, Weng F-J, et al. Striatal cholinergic interneurons modulate spike-timing in striosomes and matrix by an amphetamine-sensitive mechanism. Front Neuroanat. 2017; 11:20. doi:10.3389/fnana.2017.00020
- 66Féart C, Mingaud F, Enderlin V, et al. Differential effect of retinoic acid and triiodothyronine on the age-related hypo-expression of neurogranin in rat. Neurobiol Aging. 2005; 26: 729-738. doi:10.1016/j.neurobiolaging.2004.06.004
- 67Mingaud F, Mormede C, Etchamendy N, et al. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci. 2008; 28: 279-291. doi:10.1523/JNEUROSCI.4065-07.2008
- 68Pilleron S, Weber D, Pérès K, et al. Patterns of circulating fat-soluble vitamins and carotenoids and risk of frailty in four European cohorts of older adults. Eur J Nutr. 2019; 58: 379-389. doi:10.1007/s00394-017-1602-0
- 69Sgroi S, Tonini R. Opioidergic modulation of striatal circuits, implications in Parkinson's disease and levodopa induced dyskinesia. Front Neurol. 2018; 9: 524. doi:10.3389/fneur.2018.00524
- 70Albin RL, van der Zee S, van Laar T, et al. Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. Prog Brain Res. 2022; 269: 345-371. doi:10.1016/bs.pbr.2022.01.011
- 71Amalric M, Pattij T, Sotiropoulos I, et al. Where dopaminergic and cholinergic systems interact: a gateway for tuning neurodegenerative disorders. Front Behav Neurosci. 2021; 15:661973. doi:10.3389/fnbeh.2021.661973
- 72Shen W, Zhai S, Surmeier DJ. Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis. 2022; 167:105686. doi:10.1016/j.nbd.2022.105686
- 73Bonhomme D, Pallet V, Dominguez G, et al. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci. 2014; 6: 6. doi:10.3389/fnagi.2014.00006
- 74Clark JN, Whiting A, McCaffery P. Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert Opin Drug Metab Toxicol. 2020; 16: 1097-1108. doi:10.1080/17425255.2020.1811232
- 75Moise AR, Noy N, Palczewski K, Blaner WS. Delivery of retinoid-based therapies to target tissues. Biochemistry. 2007; 46: 4449-4458. doi:10.1021/bi7003069
- 76Napoli JL. Post-natal all-trans-retinoic acid biosynthesis. Methods Enzymol. 2020; 637: 27-54. doi:10.1016/bs.mie.2020.02.003